

Mutation Detection Strategies

Jennifer L. Hunt, MD, MEd Aubrey J. Hough Jr, MD, Endowed Professor of Pathology Chair of Pathology and Laboratory Medicine University of Arkansas for Medical Sciences jhunt2@uams.edu

- What type of sample are you using?
 - Paraffin embedded tissues may limit options
- What type of mutation is it?

Common Types of Mutations

- Point mutation
- Translocation
- Amplification
- Deletion
- Microsatellite instability

Point Mutations

- Diseases associated with point mutations
 - Hereditary diseases
 - Tumors with somatic mutations in oncogenes

Oncogenes

- Dominant genesOne copy mutated
- Activating mutations
 - Point mutation
 - Amplification
 - Translocation

- Is it in a consistent, small, and reproducible region?
- Is it variable across a larger region?
 - Sanger sequencing
 - Next generation sequencing

KRAS Codons 12 &13

Oncogene Detection Techniques

- PCR detection methods
 - Screening techniques
 - Allele specific PCR
- Full sequencing methods
 - Sanger sequencing
 - Single base extension
 - Pyrosequencing
 - Next generation sequencing

Screening for Mutations

Allele Specific PCR

Allele Specific PCR

- Gene Sequencing Approaches
 - Dideoxy sequencing ("first generation")
 - Sanger sequencing
 - Single base extension sequencing ("SNaPshot")
 - Pyrosequencing
 - Next generation sequencing

Translocation

- Diseases associated with translocations
 - Hereditary diseases
 - Tumors with somatic mutations
- Are both partner genes known and consistent?

- DNA based PCR testing
- RNA based RT-PCR testing
- Fluorescent in situ hybridization (FISH)

In Situ for Translocations

- Fusion probes
 - One probe on each partner
 - Both genes must be known
 - Will only pick up consistent partner genes

- Break-apart probes
 - Probes flank the break point on one partner
 - Only one gene must be known
 - Will pick up variable translocations

Fusion for Translocation

Break-Apart for Translocation

- Diseases associated with amplification mutations
 - Hereditary diseases
 - Tumors with somatic mutations

In Situ for Amplification

Deletion Mutations

- Diseases associated with deletions
 - Hereditary diseases
 - Tumors with somatic mutations in tumor suppressor genes

Suppressor Genes

- Recessive genesBoth copies mutated
- Inactivating mutations
 - Point mutation
 - Deletions
 - Methylation

- Loss of heterozygosity
- In situ hybridization (FISH or CISH)
- Comparative genomic hybridization

Size of PCR product (basepairs)

Relative amount of PCR product

Tumor suppressor gene

PCR Short Tandem Repeats

Allele 1

PCR product for allele 1

PCR product for allele 2

PCR Analysis

Normal

Loss of heterozygosity

Capillary electrophoresis

In Situ for Deletion

- Diseases associated with expansion or contractions of microsatellites
 - Hereditary diseases
 - Lynch Syndrome tumors

Microsatellites

- Short tandem repeats
 - 2 to 7 basepairs in length
 - Dinucleotide, Trinucleotide, Tetranucleotide...

ATCG

Repeated a variable number of times
ATCG ATCG ATCG ATCG ATCG ATCG

Short Tandem Repeats

Mononucleotide TTTTTTTTT

(10 repeat allele)

Dinucleotide

CACACACA

(4 repeat allele)

Tetranucleotide GACTGACTGACT

(3 repeat allele)

Microsatellite Instability Testing

